Your browser doesn't support javascript.
loading
Degenerate isostable reduction for fixed-point and limit-cycle attractors with defective linearizations.
Wilson, Dan.
Afiliação
  • Wilson D; Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA.
Phys Rev E ; 103(2-1): 022211, 2021 Feb.
Article em En | MEDLINE | ID: mdl-33735978
ABSTRACT
Isostable coordinates provide a convenient framework for understanding the transient behavior of dynamical systems with stable attractors. These isostable coordinates are often used to characterize the slowest decaying eigenfunctions of the Koopman operator; by neglecting the rapidly decaying Koopman eigenfunctions a reduced order model can be obtained. Existing work has focused primarily on nondegenerate isostable coordinates, that is, isostable coordinates that are associated with eigenvalues that have identical algebraic and geometric multiplicities. Current isostable reduction methods cannot be applied to characterize the decay associated with a defective eigenvalue. In this work, a degenerate isostable framework is proposed for use when eigenvalues are defective. These degenerate isostable coordinates are investigated in the context of various reduced order modeling frameworks that retain many of the important properties of standard (nondegenerate) isostable reduced modeling strategies. Reduced order modeling examples that require the use of degenerate isostable coordinates are presented with relevance to both circadian physiology and nonlinear fluid flows.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos