Your browser doesn't support javascript.
loading
Biased Docking for Protein-Ligand Pose Prediction.
Arcon, Juan Pablo; Turjanski, Adrián G; Martí, Marcelo A; Forli, Stefano.
Afiliação
  • Arcon JP; Departamento de Química Biológica e IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina. juan.arcon@irbbarcelona.org.
  • Turjanski AG; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. juan.arcon@irbbarcelona.org.
  • Martí MA; Departamento de Química Biológica e IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
  • Forli S; Departamento de Química Biológica e IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
Methods Mol Biol ; 2266: 39-72, 2021.
Article em En | MEDLINE | ID: mdl-33759120
The interaction between a protein and its ligands is one of the basic and most important processes in biological chemistry. Docking methods aim to predict the molecular 3D structure of protein-ligand complexes starting from coordinates of the protein and the ligand separately. They are widely used in both industry and academia, especially in the context of drug development projects. AutoDock4 is one of the most popular docking tools and, as for any docking method, its performance is highly system dependent. Knowledge about specific protein-ligand interactions on a particular target can be used to successfully overcome this limitation. Here, we describe how to apply the AutoDock Bias protocol, a simple and elegant strategy that allows users to incorporate target-specific information through a modified scoring function that biases the ligand structure towards those poses (or conformations) that establish selected interactions. We discuss two examples using different bias sources. In the first, we show how to steer dockings towards interactions derived from crystal structures of the receptor with different ligands; in the second example, we define and apply hydrophobic biases derived from Molecular Dynamics simulations in mixed solvents. Finally, we discuss general concepts of biased docking, its performance in pose prediction, and virtual screening campaigns as well as other potential applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solventes / Proteínas / Simulação de Acoplamento Molecular Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solventes / Proteínas / Simulação de Acoplamento Molecular Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos