Your browser doesn't support javascript.
loading
CUTie2: The Attack of the Cyclic Nucleotide Sensor Clones.
Klein, Florencia; Sardi, Florencia; Machado, Matías R; Ortega, Claudia; Comini, Marcelo A; Pantano, Sergio.
Afiliação
  • Klein F; BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Uruguay.
  • Sardi F; Graduate Program in Chemistry, Facultad de Química, Universidad de La República, Montevideo, Uruguay.
  • Machado MR; Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
  • Ortega C; BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Uruguay.
  • Comini MA; Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
  • Pantano S; Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
Front Mol Biosci ; 8: 629773, 2021.
Article em En | MEDLINE | ID: mdl-33778003
The detection of small molecules in living cells using genetically encoded FRET sensors has revolutionized our understanding of signaling pathways at the sub-cellular level. However, engineering fluorescent proteins and specific binding domains to create new sensors remains challenging because of the difficulties associated with the large size of the polypeptides involved, and their intrinsically huge conformational variability. Indeed, FRET sensors' design still relies on vague structural notions, and trial and error combinations of linkers and protein modules. We recently designed a FRET sensor for the second messenger cAMP named CUTie (Cyclic nucleotide Universal Tag for imaging experiments), which granted sub-micrometer resolution in living cells. Here we apply a combination of sequence/structure analysis to produce a new-generation FRET sensor for the second messenger cGMP based on Protein kinase G I (PKGI), which we named CUTie2. Coarse-grained molecular dynamics simulations achieved an exhaustive sampling of the relevant spatio-temporal coordinates providing a quasi-quantitative prediction of the FRET efficiency, as confirmed by in vitro experiments. Moreover, biochemical characterization showed that the cGMP binding module maintains virtually the same affinity and selectivity for its ligand thant the full-length protein. The computational approach proposed here is easily generalizable to other allosteric protein modules, providing a cost effective-strategy for the custom design of FRET sensors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Mol Biosci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Uruguai País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Mol Biosci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Uruguai País de publicação: Suíça