Your browser doesn't support javascript.
loading
The Effects of Perinodular Features on Solid Lung Nodule Classification.
Calheiros, José Lucas Leite; de Amorim, Lucas Benevides Viana; de Lima, Lucas Lins; de Lima Filho, Ailton Felix; Ferreira Júnior, José Raniery; de Oliveira, Marcelo Costa.
Afiliação
  • Calheiros JLL; Computing Institute, Federal University of Alagoas (UFAL), Maceió, AL, Brazil. lucaslc@uc.ufal.br.
  • de Amorim LBV; Computing Institute, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
  • de Lima LL; Computing Institute, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
  • de Lima Filho AF; Computing Institute, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
  • Ferreira Júnior JR; Ribeirão Preto Medical School, University of Sao Paulo (USP), Ribeirão Preto, SP, Brazil.
  • de Oliveira MC; Computing Institute, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
J Digit Imaging ; 34(4): 798-810, 2021 08.
Article em En | MEDLINE | ID: mdl-33791910
Lung cancer is the most lethal malignant neoplasm worldwide, with an annual estimated rate of 1.8 million deaths. Computed tomography has been widely used to diagnose and detect lung cancer, but its diagnosis remains an intricate and challenging work, even for experienced radiologists. Computer-aided diagnosis tools and radiomics tools have provided support to the radiologist's decision, acting as a second opinion. The main focus of these tools has been to analyze the intranodular zone; nevertheless, recent works indicate that the interaction between the nodule and its surroundings (perinodular zone) could be relevant to the diagnosis process. However, only a few works have investigated the importance of specific attributes of the perinodular zone and have shown how important they are in the classification of lung nodules. In this context, the purpose of this work is to evaluate the impact of using the perinodular zone on the characterization of lung lesions. Motivated by reproducible research, we used a large public dataset of solid lung nodule images and extracted fine-tuned radiomic attributes from the perinodular and intranodular zones. Our best-evaluated model obtained an average AUC of 0.916, an accuracy of 84.26%, a sensitivity of 84.45%, and specificity of 83.84%. The combination of attributes from the perinodular and intranodular zones in the image characterization resulted in an improvement in all the metrics analyzed when compared to intranodular-only characterization. Therefore, our results highlighted the importance of using the perinodular zone in the solid pulmonary nodules classification process.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nódulo Pulmonar Solitário / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nódulo Pulmonar Solitário / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos