Your browser doesn't support javascript.
loading
Two-dimensional topological insulators exfoliated from Na3Bi-like Dirac semimetals.
Guo, Xiaoqiu; Yu, Ruixin; Jiang, Jingwen; Ma, Zhuang; Zhang, Xiuwen.
Afiliação
  • Guo X; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. xiuwenzhang@szu.edu.cn.
  • Yu R; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. xiuwenzhang@szu.edu.cn.
  • Jiang J; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. xiuwenzhang@szu.edu.cn.
  • Ma Z; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. xiuwenzhang@szu.edu.cn.
  • Zhang X; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. xiuwenzhang@szu.edu.cn.
Phys Chem Chem Phys ; 23(17): 10545-10550, 2021 May 05.
Article em En | MEDLINE | ID: mdl-33900337
Topological insulation is widely predicted in two-dimensional (2D) materials realized by epitaxial growth or van der Waals (vdW) exfoliation. Such 2D topological insulators (TI's) host many interesting physical properties such as the quantum spin Hall effect and superconductivity. Here, we extend the search of 2D TI's into the exfoliatable non-vdW 2D crystals. We find that three-dimensional Dirac semimetals A3Bi (A = Na, K, Rb) (P3[combining macron]c1) can be exfoliated into 2D materials with exfoliation energies of 0.479-0.990 J m-2. Our careful examination of the topological invariants of exfoliated A3Bi monolayers/multilayers by using two well-established approaches reveals that bilayer and tetralayer Na3Bi are 2D TI's. It is found that the band gap of 2D TI's can be significantly increased by external strain. We further find that the predicted 2D TI's possess interesting hidden Rashba-like spin textures. Our results suggest a new arena to search for two-dimensional topological insulators and spintronic materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido