Your browser doesn't support javascript.
loading
Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis.
da Silva, Lucas Glaucio; da Silva Monteiro, Waleska Rayanne Sizinia; de Aguiar Moreira, Tiago Medeiros; Rabelo, Maria Aparecida Esteves; de Assis, Emílio Augusto Campos Pereira; de Souza, Gustavo Torres.
Afiliação
  • da Silva LG; Faculty of Medical and Health Sciences of Juiz de Fora, Alameda Salvaterra, Juiz de Fora, Minas Gerais, 200 - 36033-003, Brazil.
  • da Silva Monteiro WRS; Faculty of Medical and Health Sciences of Juiz de Fora, Alameda Salvaterra, Juiz de Fora, Minas Gerais, 200 - 36033-003, Brazil.
  • de Aguiar Moreira TM; Department of Biology - Genetics - Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
  • Rabelo MAE; Faculty of Medical and Health Sciences of Juiz de Fora, Alameda Salvaterra, Juiz de Fora, Minas Gerais, 200 - 36033-003, Brazil.
  • de Assis EACP; Faculty of Medical and Health Sciences of Juiz de Fora, Alameda Salvaterra, Juiz de Fora, Minas Gerais, 200 - 36033-003, Brazil.
  • de Souza GT; Animal Reproduction Laboratory - Brazilian Agricultural Research Corporation - Dairy Cattle, Laboratory of Animal Reproduction, Av. Eugênio do Nascimento, Juiz de Fora, Minas Gerais, 610 - 36038-330, Brazil.
Appl Microsc ; 51(1): 6, 2021 Apr 30.
Article em En | MEDLINE | ID: mdl-33929635
Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (p = 0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promissing statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p < 0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Appl Microsc Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Coréia do Sul

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Appl Microsc Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Coréia do Sul