Your browser doesn't support javascript.
loading
K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes.
Orozco-Arias, Simon; Candamil-Cortés, Mariana S; Jaimes, Paula A; Piña, Johan S; Tabares-Soto, Reinel; Guyot, Romain; Isaza, Gustavo.
Afiliação
  • Orozco-Arias S; Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Candamil-Cortés MS; Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia.
  • Jaimes PA; Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Piña JS; Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Tabares-Soto R; Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Guyot R; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Isaza G; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
PeerJ ; 9: e11456, 2021.
Article em En | MEDLINE | ID: mdl-34055489
Every day more plant genomes are available in public databases and additional massive sequencing projects (i.e., that aim to sequence thousands of individuals) are formulated and released. Nevertheless, there are not enough automatic tools to analyze this large amount of genomic information. LTR retrotransposons are the most frequent repetitive sequences in plant genomes; however, their detection and classification are commonly performed using semi-automatic and time-consuming programs. Despite the availability of several bioinformatic tools that follow different approaches to detect and classify them, none of these tools can individually obtain accurate results. Here, we used Machine Learning algorithms based on k-mer counts to classify LTR retrotransposons from other genomic sequences and into lineages/families with an F1-Score of 95%, contributing to develop a free-alignment and automatic method to analyze these sequences.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PeerJ Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PeerJ Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos