Your browser doesn't support javascript.
loading
Disjoint and Functional Principal Component Analysis for Infected Cases and Deaths Due to COVID-19 in South American Countries with Sensor-Related Data.
Martin-Barreiro, Carlos; Ramirez-Figueroa, John A; Cabezas, Xavier; Leiva, Víctor; Galindo-Villardón, M Purificación.
Afiliação
  • Martin-Barreiro C; Department of Statistics, Universidad de Salamanca, 37008 Salamanca, Spain.
  • Ramirez-Figueroa JA; Faculty of Natural Sciences and Mathematics, Universidad Politécnica ESPOL, Guayaquil 090902, Ecuador.
  • Cabezas X; Department of Statistics, Universidad de Salamanca, 37008 Salamanca, Spain.
  • Leiva V; Faculty of Natural Sciences and Mathematics, Universidad Politécnica ESPOL, Guayaquil 090902, Ecuador.
  • Galindo-Villardón MP; Faculty of Natural Sciences and Mathematics, Universidad Politécnica ESPOL, Guayaquil 090902, Ecuador.
Sensors (Basel) ; 21(12)2021 Jun 14.
Article em En | MEDLINE | ID: mdl-34198627
In this paper, we group South American countries based on the number of infected cases and deaths due to COVID-19. The countries considered are: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Paraguay, Uruguay, and Venezuela. The data used are collected from a database of Johns Hopkins University, an institution that is dedicated to sensing and monitoring the evolution of the COVID-19 pandemic. A statistical analysis, based on principal components with modern and recent techniques, is conducted. Initially, utilizing the correlation matrix, standard components and varimax rotations are calculated. Then, by using disjoint components and functional components, the countries are grouped. An algorithm that allows us to keep the principal component analysis updated with a sensor in the data warehouse is designed. As reported in the conclusions, this grouping changes depending on the number of components considered, the type of principal component (standard, disjoint or functional) and the variable to be considered (infected cases or deaths). The results obtained are compared to the k-means technique. The COVID-19 cases and their deaths vary in the different countries due to diverse reasons, as reported in the conclusions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pandemias / COVID-19 Limite: Humans País/Região como assunto: America do sul / Argentina / Brasil / Chile / Colombia / Ecuador / Peru / Uruguay / Venezuela Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pandemias / COVID-19 Limite: Humans País/Região como assunto: America do sul / Argentina / Brasil / Chile / Colombia / Ecuador / Peru / Uruguay / Venezuela Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha País de publicação: Suíça