Your browser doesn't support javascript.
loading
Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing.
de Oliveira, Gabriel Silva; Marcato Junior, José; Polidoro, Caio; Osco, Lucas Prado; Siqueira, Henrique; Rodrigues, Lucas; Jank, Liana; Barrios, Sanzio; Valle, Cacilda; Simeão, Rosângela; Carromeu, Camilo; Silveira, Eloise; André de Castro Jorge, Lúcio; Gonçalves, Wesley; Santos, Mateus; Matsubara, Edson.
Afiliação
  • de Oliveira GS; Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Marcato Junior J; Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Polidoro C; Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Osco LP; Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Siqueira H; Faculty of Engineering, Architecture and Urbanism, University of Western São Paulo, Presidente Prudente 19067175, Brazil.
  • Rodrigues L; Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Jank L; Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Barrios S; Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, Brazil.
  • Valle C; Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, Brazil.
  • Simeão R; Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, Brazil.
  • Carromeu C; Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, Brazil.
  • Silveira E; Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande 79106550, Brazil.
  • André de Castro Jorge L; Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Gonçalves W; Embrapa Instrumentation, Brazilian Agricultural Research Corporation, São Carlos 13560970, Brazil.
  • Santos M; Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
  • Matsubara E; Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil.
Sensors (Basel) ; 21(12)2021 Jun 09.
Article em En | MEDLINE | ID: mdl-34207543
Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus, this trait is evaluated in most forage breeding programs with the objective of increasing the yield. Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP), aiming to estimate parameters correlated to important traits. The main goal of this study was to propose a convolutional neural network (CNN) approach using UAV-RGB imagery to estimate dry matter yield traits in a guineagrass breeding program. For this, an experiment composed of 330 plots of full-sib families and checks conducted at Embrapa Beef Cattle, Brazil, was used. The image dataset was composed of images obtained with an RGB sensor embedded in a Phantom 4 PRO. The traits leaf dry matter yield (LDMY) and total dry matter yield (TDMY) were obtained by conventional agronomic methodology and considered as the ground-truth data. Different CNN architectures were analyzed, such as AlexNet, ResNeXt50, DarkNet53, and two networks proposed recently for related tasks named MaCNN and LF-CNN. Pretrained AlexNet and ResNeXt50 architectures were also studied. Ten-fold cross-validation was used for training and testing the model. Estimates of DMY traits by each CNN architecture were considered as new HTP traits to compare with real traits. Pearson correlation coefficient r between real and HTP traits ranged from 0.62 to 0.79 for LDMY and from 0.60 to 0.76 for TDMY; root square mean error (RSME) ranged from 286.24 to 366.93 kg·ha-1 for LDMY and from 413.07 to 506.56 kg·ha-1 for TDMY. All the CNNs generated heritable HTP traits, except LF-CNN for LDMY and AlexNet for TDMY. Genetic correlations between real and HTP traits were high but varied according to the CNN architecture. HTP trait from ResNeXt50 pretrained achieved the best results for indirect selection regardless of the dry matter trait. This demonstrates that CNNs with remote sensing data are highly promising for HTP for dry matter yield traits in forage breeding programs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Tecnologia de Sensoriamento Remoto Limite: Animals País/Região como assunto: America do sul / Brasil Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Tecnologia de Sensoriamento Remoto Limite: Animals País/Região como assunto: America do sul / Brasil Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça