Your browser doesn't support javascript.
loading
Multiple linear regression models for predicting the n­octanol/water partition coefficients in the SAMPL7 blind challenge.
Lopez, Kenneth; Pinheiro, Silvana; Zamora, William J.
Afiliação
  • Lopez K; School of Chemistry, University of Costa Rica, San Pedro, San José, Costa Rica.
  • Pinheiro S; Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará, 66075-110, Brazil.
  • Zamora WJ; School of Chemistry, University of Costa Rica, San Pedro, San José, Costa Rica. william.zamoraramirez@ucr.ac.cr.
J Comput Aided Mol Des ; 35(8): 923-931, 2021 08.
Article em En | MEDLINE | ID: mdl-34251523
A multiple linear regression model called MLR-3 is used for predicting the experimental n-octanol/water partition coefficient (log PN) of 22 N-sulfonamides proposed by the organizers of the SAMPL7 blind challenge. The MLR-3 method was trained with 82 molecules including drug-like sulfonamides and small organic molecules, which resembled the main functional groups present in the challenge dataset. Our model, submitted as "TFE-MLR", presented a root-mean-square error of 0.58 and mean absolute error of 0.41 in log P units, accomplishing the highest accuracy, among empirical methods and also in all submissions based on the ranked ones. Overall, the results support the appropriateness of multiple linear regression approach MLR-3 for computing the n-octanol/water partition coefficient in sulfonamide-bearing compounds. In this context, the outstanding performance of empirical methodologies, where 75% of the ranked submissions achieved root-mean-square errors < 1 log P units, support the suitability of these strategies for obtaining accurate and fast predictions of physicochemical properties as partition coefficients of bioorganic compounds.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Termodinâmica / Simulação por Computador / Água / 1-Octanol / Modelos Químicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Aided Mol Des Assunto da revista: BIOLOGIA MOLECULAR / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Costa Rica País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Termodinâmica / Simulação por Computador / Água / 1-Octanol / Modelos Químicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Aided Mol Des Assunto da revista: BIOLOGIA MOLECULAR / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Costa Rica País de publicação: Holanda