Your browser doesn't support javascript.
loading
Analytic approach for the number statistics of non-Hermitian random matrices.
Castillo, Isaac Pérez; Guzmán-González, Edgar; Sánchez, Antonio Tonatiúh Ramos; Metz, Fernando L.
Afiliação
  • Castillo IP; Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México 09340, Mexico.
  • Guzmán-González E; Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México 09340, Mexico.
  • Sánchez ATR; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. de México C.P. 04510, Mexico.
  • Metz FL; Physics Institute, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
Phys Rev E ; 103(6-1): 062108, 2021 Jun.
Article em En | MEDLINE | ID: mdl-34271724
We introduce a powerful analytic method to study the statistics of the number N_{A}(γ) of eigenvalues inside any smooth Jordan curve γ∈C for infinitely large non-Hermitian random matrices A. Our generic approach can be applied to different random matrix ensembles of a mean-field type, even when the analytic expression for the joint distribution of eigenvalues is not known. We illustrate the method on the adjacency matrices of weighted random graphs with asymmetric couplings, for which standard random-matrix tools are inapplicable, and obtain explicit results for the diluted real Ginibre ensemble. The main outcome is an effective theory that determines the cumulant generating function of N_{A} via a path integral along γ, with the path probability distribution following from the numerical solution of a nonlinear self-consistent equation. We derive expressions for the mean and the variance of N_{A} as well as for the rate function governing rare fluctuations of N_{A}(γ). All theoretical results are compared with direct diagonalization of finite random matrices, exhibiting an excellent agreement.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Phys Rev E Ano de publicação: 2021 Tipo de documento: Article País de afiliação: México País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Phys Rev E Ano de publicação: 2021 Tipo de documento: Article País de afiliação: México País de publicação: Estados Unidos