Your browser doesn't support javascript.
loading
Mild Steel GMA Welds Microstructural Analysis and Estimation Using Sensor Fusion and Neural Network Modeling.
Caio, Leandro Bruno Alves; Silva, Alysson Martins Almeida; Bestard, Guillermo Alvarez; Vieira, Lais Soares; de Carvalho, Guilherme Caribé; Alfaro, Sadek Crisóstomo Absi.
Afiliação
  • Caio LBA; Postgraduate Program in Mechatronic Systems (PPMEC), Campus Universitário Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.
  • Silva AMA; Mechanical Engineering Department, Faculty of Technology, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.
  • Bestard GA; Electronic Engineering, Faculty of Gama, University of Brasilia, Gama 72405-520, DF, Brazil.
  • Vieira LS; Postgraduate Program in Mechatronic Systems (PPMEC), Campus Universitário Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.
  • de Carvalho GC; Mechanical Engineering Department, Faculty of Technology, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.
  • Alfaro SCA; Mechanical Engineering Department, Faculty of Technology, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.
Sensors (Basel) ; 21(16)2021 Aug 13.
Article em En | MEDLINE | ID: mdl-34450902
This study aims at evaluating the efficiency of sensor fusion, based on neural networks, to estimate the microstructural characteristics of both the weld bead and base material in GMAW processes. The weld beads of AWS ER70S-6 wire were deposited on SAE 1020 steel plates varying welding voltage, welding speed, and wire-feed speed. The thermal behavior of the material during the process execution was analyzed using thermographic information gathered by an infrared camera. The microstructure was characterized by optical (confocal) microscopy, scanning electron microscopy, and X-ray Diffraction tests. Finally, models for estimating the weld bead microstructure were developed by fusing all the information through a neural network modeling approach. A R value of 0.99472 was observed for modelling all zones of microstructure in the same ANN using Bayesian Regularization with 17 and 15 neurons in the first and second hidden layers, respectively, with 4 training runs (which was the lowest R value among all tested configurations). The results obtained prove that RNAs can be used to assist the project of welded joints as they make it possible to estimate the extension of HAZ.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Soldagem Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Soldagem Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça