Your browser doesn't support javascript.
loading
Continuous cardiorespiratory monitoring is a dominant source of predictive signal in machine learning for risk stratification and clinical decision support.
Monfredi, Oliver; Keim-Malpass, Jessica; Moorman, J Randall.
Afiliação
  • Monfredi O; Center for Advanced Medical Analytics, University of Virginia, United States of America.
  • Keim-Malpass J; Cardiovascular Division, Department of Internal Medicine, School of Medicine, University of Virginia, United States of America.
  • Moorman JR; Center for Advanced Medical Analytics, University of Virginia, United States of America.
Physiol Meas ; 42(9)2021 09 27.
Article em En | MEDLINE | ID: mdl-34580243
Beaulieu-Jones and coworkers propose a litmus test for the field of predictive analytics-performance improvements must be demonstrated to be the result of non-clinician-initiated data, otherwise, there should be caution in assuming that predictive models could improve clinical decision-making (Beaulieu-Joneset al2021). They demonstrate substantial prognostic information in unsorted physician orders made before the first midnight of hospital admission, and we are persuaded that it is fair to ask-if the physician thought of it first, what exactly is machine learning for in-patient risk stratification learning about? While we want predictive analytics to represent the leading indicators of a patient's illness, does it instead merely reflect the lagging indicators of clinicians' actions? We propose that continuous cardiorespiratory monitoring-'routine telemetry data,' in Beaulieu-Jones' terms-represents the most valuable non-clinician-initiated predictive signal present in patient data, and the value added to patient care justifies the efforts and expense required. Here, we present a clinical and a physiological point of view to support our contention.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas de Apoio a Decisões Clínicas Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Physiol Meas Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas de Apoio a Decisões Clínicas Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Physiol Meas Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido