Your browser doesn't support javascript.
loading
Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping.
Hassan, Muhammad Adeel; Yang, Mengjiao; Rasheed, Awais; Tian, Xiuling; Reynolds, Matthew; Xia, Xianchun; Xiao, Yonggui; He, Zhonghu.
Afiliação
  • Hassan MA; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
  • Yang M; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
  • Rasheed A; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
  • Tian X; International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China.
  • Reynolds M; Deparment of Plant Science, Quaid-i-Azam University Islamabad 44000, Pakistan.
  • Xia X; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
  • Xiao Y; Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Mexico DF 06600, Mexico.
  • He Z; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
Plant Physiol ; 187(4): 2623-2636, 2021 12 04.
Article em En | MEDLINE | ID: mdl-34601616
Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Espectral / Triticum / Mapeamento Cromossômico / Produtos Agrícolas / Locos de Características Quantitativas / Dispositivos Aéreos não Tripulados Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Espectral / Triticum / Mapeamento Cromossômico / Produtos Agrícolas / Locos de Características Quantitativas / Dispositivos Aéreos não Tripulados Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos