CFD modeling of different mass transfer coefficients on hydrogen sulfide emission in a flux chamber.
Environ Sci Pollut Res Int
; 29(10): 14961-14974, 2022 Feb.
Article
em En
| MEDLINE
| ID: mdl-34622408
Hydrogen sulfide (H2S) is commonly used as an indicator for odorous gas emission monitoring in wastewater treatment plants. The H2S emission estimations can be performed using algebraic mathematical models or carrying out measurements at the source, with the dynamic flux chamber, for example. This work brings together these two methodologies in a computational fluid dynamics analysis. Fifteen liquid-phase mass transfer coefficient ([Formula: see text]) models were initially evaluated in establishing, at the liquid-gas interface in a flux chamber, an H2S emission flux based on the friction velocity field from three different inlet flows (2, 5, and 10 L min-1). Ten [Formula: see text] models were fully simulated, and the numerical results were compared with available experimental data. The higher the inlet flow, the higher the friction velocity at the interface, and the higher the H2S emission. The H2S emission was also strongly dependent on the constant coefficients of the existing [Formula: see text] models. Small variability on those coefficients generates considerable changes in emissions at the interface. Few and different models performed well in describing the available concentration data at the outlet sampling probe for different inlet flows, which shows there is still no single model capable of representing all simulated friction velocity ranges (0.005 to 0.017 m s-1).
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Sulfeto de Hidrogênio
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Assunto da revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Alemanha