Your browser doesn't support javascript.
loading
Energy Consumption Forecasting for Smart Meters Using Extreme Learning Machine Ensemble.
de Mattos Neto, Paulo S G; de Oliveira, João F L; Bassetto, Priscilla; Siqueira, Hugo Valadares; Barbosa, Luciano; Alves, Emilly Pereira; Marinho, Manoel H N; Rissi, Guilherme Ferretti; Li, Fu.
Afiliação
  • de Mattos Neto PSG; Centro de Informática, Universidade Federal de Pernambuco, Recife 50740-560, Brazil.
  • de Oliveira JFL; Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife 50720-001, Brazil.
  • Bassetto P; Graduate Program in Industrial Engineering, Federal University of Technology-Paraná, Ponta Grossa 84017-220, Brazil.
  • Siqueira HV; Graduate Program in Industrial Engineering, Federal University of Technology-Paraná, Ponta Grossa 84017-220, Brazil.
  • Barbosa L; Centro de Informática, Universidade Federal de Pernambuco, Recife 50740-560, Brazil.
  • Alves EP; Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife 50720-001, Brazil.
  • Marinho MHN; Advanced Institute of Technology and Innovation (IATI), Recife 50751-310, Brazil.
  • Rissi GF; Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife 50720-001, Brazil.
  • Li F; CPFL Energia, Campinas, São Paulo 13087-397, Brazil.
Sensors (Basel) ; 21(23)2021 Dec 03.
Article em En | MEDLINE | ID: mdl-34884100
The employment of smart meters for energy consumption monitoring is essential for planning and management of power generation systems. In this context, forecasting energy consumption is a valuable asset for decision making, since it can improve the predictability of forthcoming demand to energy providers. In this work, we propose a data-driven ensemble that combines five single well-known models in the forecasting literature: a statistical linear autoregressive model and four artificial neural networks: (radial basis function, multilayer perceptron, extreme learning machines, and echo state networks). The proposed ensemble employs extreme learning machines as the combination model due to its simplicity, learning speed, and greater ability of generalization in comparison to other artificial neural networks. The experiments were conducted on real consumption data collected from a smart meter in a one-step-ahead forecasting scenario. The results using five different performance metrics demonstrate that our solution outperforms other statistical, machine learning, and ensembles models proposed in the literature.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça