An ultra-low noise amplifier array system for high throughput single entity analysis.
Faraday Discuss
; 233(0): 33-43, 2022 04 05.
Article
em En
| MEDLINE
| ID: mdl-34913454
Electrochemical measurements at the single entity level provide ultra-sensitive tools for the precise diagnosis and understanding of basic biological and chemical processes. By decoding current signatures, single-entity electrochemistry provides abundant information on charges, sizes, shapes, catalytic performances and compositions. The accuracy of single-entity electrochemistry highly relies on advanced instrumentation to achieve the amperometric resolution at the sub-picoampere level and the temporal resolution at the sub-microsecond level. Currently, it is still a challenge for paralleling amplifiers to allow low-noise and high bandwidth single-entity electrochemical measurements. Herein, we developed a low-noise four-channel electrochemical instrumentation that integrates an Au electrode array with amplifiers in the circuit board. With this amplifier array, we achieved a high bandwidth (>100 kHz) electrochemical measurement. The further practical experiments proved the capability of this amplifier array system in acquiring transient signals from both single-molecule detection with an aerolysin nanopore and single Pt nanoparticle catalysis during the dynamic collision process. Paired with appropriate microfluidic array systems, our instrumentation will enable an extraordinarily high-throughput feature for single-entity sensing.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Nanoporos
Idioma:
En
Revista:
Faraday Discuss
Assunto da revista:
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de publicação:
Reino Unido