Your browser doesn't support javascript.
loading
Diabetic retinopathy classification for supervised machine learning algorithms.
Nakayama, Luis Filipe; Ribeiro, Lucas Zago; Gonçalves, Mariana Batista; Ferraz, Daniel A; Dos Santos, Helen Nazareth Veloso; Malerbi, Fernando Korn; Morales, Paulo Henrique; Maia, Mauricio; Regatieri, Caio Vinicius Saito; Mattos, Rubens Belfort.
Afiliação
  • Nakayama LF; Physician, Department of Ophthalmology, Universidade Federal de São Paulo - EPM, Botucatu Street, 821, Vila Clementino, São Paulo, SP, 04023-062, Brazil. nakayama.luis@gmail.com.
  • Ribeiro LZ; Physician, Department of Ophthalmology, Universidade Federal de São Paulo - EPM, Botucatu Street, 821, Vila Clementino, São Paulo, SP, 04023-062, Brazil.
  • Gonçalves MB; Physician, Department of Ophthalmology, Universidade Federal de São Paulo - EPM, Botucatu Street, 821, Vila Clementino, São Paulo, SP, 04023-062, Brazil.
  • Ferraz DA; Instituto Paulista de Estudos e Pesquisas em Oftalmologia, IPEPO, Vision Institute, São Paulo, SP, Brazil.
  • Dos Santos HNV; NIHR Biomedical Research Centre for Ophthalmology, Moorfield Eye Hospital, NHS Foundation Trust, and UCL Institute of Ophthalmology, London, UK.
  • Malerbi FK; Physician, Department of Ophthalmology, Universidade Federal de São Paulo - EPM, Botucatu Street, 821, Vila Clementino, São Paulo, SP, 04023-062, Brazil.
  • Morales PH; Instituto Paulista de Estudos e Pesquisas em Oftalmologia, IPEPO, Vision Institute, São Paulo, SP, Brazil.
  • Maia M; NIHR Biomedical Research Centre for Ophthalmology, Moorfield Eye Hospital, NHS Foundation Trust, and UCL Institute of Ophthalmology, London, UK.
  • Regatieri CVS; Physician, Department of Ophthalmology, Universidade Federal de São Paulo - EPM, Botucatu Street, 821, Vila Clementino, São Paulo, SP, 04023-062, Brazil.
  • Mattos RB; Physician, Department of Ophthalmology, Universidade Federal de São Paulo - EPM, Botucatu Street, 821, Vila Clementino, São Paulo, SP, 04023-062, Brazil.
Int J Retina Vitreous ; 8(1): 1, 2022 Jan 03.
Article em En | MEDLINE | ID: mdl-34980281
BACKGROUND: Artificial intelligence and automated technology were first reported more than 70 years ago and nowadays provide unprecedented diagnostic accuracy, screening capacity, risk stratification, and workflow optimization. Diabetic retinopathy is an important cause of preventable blindness worldwide, and artificial intelligence technology provides precocious diagnosis, monitoring, and guide treatment. High-quality exams are fundamental in supervised artificial intelligence algorithms, but the lack of ground truth standards in retinal exams datasets is a problem. MAIN BODY: In this article, ETDRS, NHS, ICDR, SDGS diabetic retinopathy grading, and manual annotation are described and compared in publicly available datasets. The various DR labeling systems generate a fundamental problem for AI datasets. Possible solutions are standardization of DR classification and direct retinal-finding identifications. CONCLUSION: Reliable labeling methods also need to be considered in datasets with more trustworthy labeling.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Int J Retina Vitreous Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Int J Retina Vitreous Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido