Your browser doesn't support javascript.
loading
A Cross-Sectional Reproducibility Study of a Standard Camera Sensor Using Artificial Intelligence to Assess Food Items: The FoodIntech Project.
Van Wymelbeke-Delannoy, Virginie; Juhel, Charles; Bole, Hugo; Sow, Amadou-Khalilou; Guyot, Charline; Belbaghdadi, Farah; Brousse, Olivier; Paindavoine, Michel.
Afiliação
  • Van Wymelbeke-Delannoy V; Elderly Unit, University Hospital Center Dijon Bourgogne F Mitterrand, F-21000 Dijon, France.
  • Juhel C; Centre des Sciences du Goût et de l'Alimentation, INRAE, Université de Bourgogne Franche-Comté, CNRS, Agrosup, F-21000 Dijon, France.
  • Bole H; ATOL Conseils & Développements (AtolCD), ZAE les Terres d'Or, Route de Saint Philibert, F-21220 Gevrey-Chambertin, France.
  • Sow AK; ATOL Conseils & Développements (AtolCD), ZAE les Terres d'Or, Route de Saint Philibert, F-21220 Gevrey-Chambertin, France.
  • Guyot C; CHU Dijon Bourgogne, Inserm, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, F-21000 Dijon, France.
  • Belbaghdadi F; Elderly Unit, University Hospital Center Dijon Bourgogne F Mitterrand, F-21000 Dijon, France.
  • Brousse O; Elderly Unit, University Hospital Center Dijon Bourgogne F Mitterrand, F-21000 Dijon, France.
  • Paindavoine M; Yumain, 14 Rue Pierre de Coubertin, F-21000 Dijon, France.
Nutrients ; 14(1)2022 Jan 05.
Article em En | MEDLINE | ID: mdl-35011096
Having a system to measure food consumption is important to establish whether individual nutritional needs are being met in order to act quickly and to minimize the risk of undernutrition. Here, we tested a smartphone-based food consumption assessment system named FoodIntech. FoodIntech, which is based on AI using deep neural networks (DNN), automatically recognizes food items and dishes and calculates food leftovers using an image-based approach, i.e., it does not require human intervention to assess food consumption. This method uses one-input and one-output images by means of the detection and synchronization of a QRcode located on the meal tray. The DNN are then used to process the images and implement food detection, segmentation and recognition. Overall, 22,544 situations analyzed from 149 dishes were used to test the reliability of this method. The reliability of the AI results, based on the central intra-class correlation coefficient values, appeared to be excellent for 39% of the dishes (n = 58 dishes) and good for 19% (n = 28). The implementation of this method is an effective way to improve the recognition of dishes and it is possible, with a sufficient number of photos, to extend the capabilities of the tool to new dishes and foods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Inteligência Artificial / Avaliação Nutricional / Smartphone / Análise de Alimentos Tipo de estudo: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nutrients Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Inteligência Artificial / Avaliação Nutricional / Smartphone / Análise de Alimentos Tipo de estudo: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nutrients Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França País de publicação: Suíça