A Cross-Sectional Reproducibility Study of a Standard Camera Sensor Using Artificial Intelligence to Assess Food Items: The FoodIntech Project.
Nutrients
; 14(1)2022 Jan 05.
Article
em En
| MEDLINE
| ID: mdl-35011096
Having a system to measure food consumption is important to establish whether individual nutritional needs are being met in order to act quickly and to minimize the risk of undernutrition. Here, we tested a smartphone-based food consumption assessment system named FoodIntech. FoodIntech, which is based on AI using deep neural networks (DNN), automatically recognizes food items and dishes and calculates food leftovers using an image-based approach, i.e., it does not require human intervention to assess food consumption. This method uses one-input and one-output images by means of the detection and synchronization of a QRcode located on the meal tray. The DNN are then used to process the images and implement food detection, segmentation and recognition. Overall, 22,544 situations analyzed from 149 dishes were used to test the reliability of this method. The reliability of the AI results, based on the central intra-class correlation coefficient values, appeared to be excellent for 39% of the dishes (n = 58 dishes) and good for 19% (n = 28). The implementation of this method is an effective way to improve the recognition of dishes and it is possible, with a sufficient number of photos, to extend the capabilities of the tool to new dishes and foods.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Processamento de Imagem Assistida por Computador
/
Inteligência Artificial
/
Avaliação Nutricional
/
Smartphone
/
Análise de Alimentos
Tipo de estudo:
Observational_studies
/
Prevalence_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Nutrients
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
França
País de publicação:
Suíça