Your browser doesn't support javascript.
loading
Data-Driven Soft Independent Modeling of Class Analogy in Paper Spray Ionization Mass Spectrometry-Based Metabolomics for Rapid Detection of Prostate Cancer.
Pinto, Frederico G; Mahmud, Iqbal; Rubio, Vanessa Y; Máquina, Ademar Domingos Viagem; Furtado Durans, Anízia Fausta; Neto, Waldomiro Borges; Garrett, Timothy J.
Afiliação
  • Pinto FG; Institute of Chemistry, Federal University of Viçosa, Campus de Rio Paranaíba, Rio Paranaíba, Minas Gerais 36570-900, Brazil.
  • Mahmud I; Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States.
  • Rubio VY; Department of Chemistry, University of Florida, Gainesville, Florida 32603, United States.
  • Máquina ADV; Institute of Chemistry, Federal University of Uberlândia, Campus Santa Mônica, Uberlândia, Minas Gerais 38400-902, Brazil.
  • Furtado Durans AF; Institute of Chemistry, Federal University of Uberlândia, Campus Santa Mônica, Uberlândia, Minas Gerais 38400-902, Brazil.
  • Neto WB; Institute of Chemistry, Federal University of Uberlândia, Campus Santa Mônica, Uberlândia, Minas Gerais 38400-902, Brazil.
  • Garrett TJ; Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States.
Anal Chem ; 94(4): 1925-1931, 2022 02 01.
Article em En | MEDLINE | ID: mdl-35060703
Sensitive, rapid, and meaningful diagnostic tools for prostate cancer (PC) screening are urgently needed. Paper spray ionization mass spectrometry (PSI-MS) is an emerging rapid technology for detecting biomarker and disease diagnoses. Due to lack of chromatography and difficulties in employing tandem MS, PSI-MS-based untargeted metabolomics often suffers from increased ion suppression and subsequent feature detection, affecting chemometric methods for disease classification. This study first evaluated the data-driven soft independent modeling of class analogy (DD-SIMCA) model to analyze PSI-MS-based global metabolomics of a urine data matrix to classify PC. The efficiency of DD-SIMCA was analyzed based on the sensitivity and specificity parameters that showed 100% correct classification of the training set, based on only PC and test set samples, based on normal and PC. This analytical methodology is easy to interpret and efficient and does not require any prior information from the healthy individual. This new application of DD-SIMCA in PSI-MS-based metabolomics for PC disease classification could also be extended to other diseases and opens a rapid strategy to discriminate against health problems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Metabolômica Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Limite: Humans / Male Idioma: En Revista: Anal Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Metabolômica Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Limite: Humans / Male Idioma: En Revista: Anal Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos