Molecular dynamics simulations of aqueous systems of inhibitor candidates for adenosine-5'-phosphosufate reductase.
J Biomol Struct Dyn
; 41(6): 2466-2477, 2023 04.
Article
em En
| MEDLINE
| ID: mdl-35100944
Molecular dynamics (MD) simulations were used to evaluate some chelating agents as potential candidates to inhibitors for dissimilatory adenosine-5'-phosphosulfate reductase (APSrAB). Molecular docking methods were used to evaluate the best binding modes of these molecules to the enzyme at two binding sites: of the substrate (enzyme active site) by mean the redocking protocol of substrate; and of one of the [Fe4S4]2+ groups by mean of the clusterization protocol. The best docking poses were selected by criteria such as low energy and RMSD (redocking) and the cluster with the higher number of similar poses (clusterization), which were submitted to MD simulations. RMSD, RDF, and hydrogen bonds results revelated that all ligands left the cube site, while in the active site, some ligands remained in their docking region, pointing to the enzyme active site as the best target for the selected ligands. The binding energy results of ligands hydroxamic acid (HXA) and catechol (CAT) showed that they bonded favorably to the enzyme and key residues of the active site contributed significantly to the protein-ligand bind, indicating HAX and CAT may compete with the substrate for interactions with these residues and displaying potential as candidates for experimental studies about APSrAB inhibitors.Communicated by Ramaswamy H. Sarma.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oxirredutases
/
Simulação de Dinâmica Molecular
Idioma:
En
Revista:
J Biomol Struct Dyn
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Reino Unido