Your browser doesn't support javascript.
loading
Multi-Sensor Wearable Health Device Framework for Real-Time Monitoring of Elderly Patients Using a Mobile Application and High-Resolution Parameter Estimation.
Pinheiro, Gabriel P M; Miranda, Ricardo K; Praciano, Bruno J G; Santos, Giovanni A; Mendonça, Fábio L L; Javidi, Elnaz; da Costa, João Paulo Javidi; de Sousa, Rafael T.
Afiliação
  • Pinheiro GPM; Department of Mechanical Engineering, University of Brasília, Brasília, Brazil.
  • Miranda RK; Department of Mechanical Engineering, University of Brasília, Brasília, Brazil.
  • Praciano BJG; Department of Mechanical Engineering, University of Brasília, Brasília, Brazil.
  • Santos GA; Department of Electrical Engineering, University of Brasília, Brasília, Brazil.
  • Mendonça FLL; Department of Electrical Engineering, University of Brasília, Brasília, Brazil.
  • Javidi E; Department of Mechanical Engineering, University of Brasília, Brasília, Brazil.
  • da Costa JPJ; Department of Mechanical Engineering, University of Brasília, Brasília, Brazil.
  • de Sousa RT; Department of Electrical Engineering, University of Brasília, Brasília, Brazil.
Front Hum Neurosci ; 15: 750591, 2021.
Article em En | MEDLINE | ID: mdl-35111004
Automatized scalable healthcare support solutions allow real-time 24/7 health monitoring of patients, prioritizing medical treatment according to health conditions, reducing medical appointments in clinics and hospitals, and enabling easy exchange of information among healthcare professionals. With recent health safety guidelines due to the COVID-19 pandemic, protecting the elderly has become imperative. However, state-of-the-art health wearable device platforms present limitations in hardware, parameter estimation algorithms, and software architecture. This paper proposes a complete framework for health systems composed of multi-sensor wearable health devices (MWHD), high-resolution parameter estimation, and real-time monitoring applications. The framework is appropriate for real-time monitoring of elderly patients' health without physical contact with healthcare professionals, maintaining safety standards. The hardware includes sensors for monitoring steps, pulse oximetry, heart rate (HR), and temperature using low-power wireless communication. In terms of parameter estimation, the embedded circuit uses high-resolution signal processing algorithms that result in an improved measure of the HR. The proposed high-resolution signal processing-based approach outperforms state-of-the-art HR estimation measurements using the photoplethysmography (PPG) sensor.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Aspecto: Patient_preference Idioma: En Revista: Front Hum Neurosci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Aspecto: Patient_preference Idioma: En Revista: Front Hum Neurosci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça