Your browser doesn't support javascript.
loading
Biomechanical Characterization of Scallop Shells Exposed to Ocean Acidification and Warming.
Abarca-Ortega, Aldo; Muñoz-Moya, Estefano; Pacheco Alarcón, Matías; García-Herrera, Claudio M; Celentano, Diego J; Lagos, Nelson A; Lardies, Marco A.
Afiliação
  • Abarca-Ortega A; Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.
  • Muñoz-Moya E; Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.
  • Pacheco Alarcón M; Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.
  • García-Herrera CM; Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.
  • Celentano DJ; Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.
  • Lagos NA; Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile.
  • Lardies MA; Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.
Front Bioeng Biotechnol ; 9: 813537, 2021.
Article em En | MEDLINE | ID: mdl-35127676
Increased carbon dioxide levels (CO2) in the atmosphere triggered a cascade of physical and chemical changes in the ocean surface. Marine organisms producing carbonate shells are regarded as vulnerable to these physical (warming), and chemical (acidification) changes occurring in the oceans. In the last decade, the aquaculture production of the bivalve scallop Argopecten purpuratus (AP) showed declined trends along the Chilean coast. These negative trends have been ascribed to ecophysiological and biomineralization constraints in shell carbonate production. This work experimentally characterizes the biomechanical response of AP scallop shells subjected to climate change scenarios (acidification and warming) via quasi-static tensile and bending tests. The experimental results indicate the adaptation of mechanical properties to hostile growth scenarios in terms of temperature and water acidification. In addition, the mechanical response of the AP subjected to control climate conditions was analyzed with finite element simulations including an anisotropic elastic constitutive model for a two-fold purpose: Firstly, to calibrate the material model parameters using the tensile test curves in two mutually perpendicular directions (representative of the mechanical behavior of the material). Secondly, to validate this characterization procedure in predicting the material's behavior in two mechanical tests.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça