Your browser doesn't support javascript.
loading
Identification of Lower-Limb Motor Tasks via Brain-Computer Interfaces: A Topical Overview.
Asanza, Víctor; Peláez, Enrique; Loayza, Francis; Lorente-Leyva, Leandro L; Peluffo-Ordóñez, Diego H.
Afiliação
  • Asanza V; Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador.
  • Peláez E; Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador.
  • Loayza F; Neuroimaging and Bioengineering Laboratory (LNB), Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador.
  • Lorente-Leyva LL; Centro de Posgrado, Universidad Politécnica Estatal del Carchi, Tulcán 040101, Ecuador.
  • Peluffo-Ordóñez DH; Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto 520001, Colombia.
Sensors (Basel) ; 22(5)2022 Mar 04.
Article em En | MEDLINE | ID: mdl-35271175
Recent engineering and neuroscience applications have led to the development of brain-computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interfaces Cérebro-Computador Tipo de estudo: Diagnostic_studies / Prognostic_studies Aspecto: Patient_preference Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Equador País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interfaces Cérebro-Computador Tipo de estudo: Diagnostic_studies / Prognostic_studies Aspecto: Patient_preference Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Equador País de publicação: Suíça