Your browser doesn't support javascript.
loading
Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease.
Vilne, Baiba; Sawant, Aniket; Rudaka, Irina.
Afiliação
  • Vilne B; Bioinformatics Lab, Riga Stradins University, LV-1007 Riga, Latvia.
  • Sawant A; Bioinformatics Lab, Riga Stradins University, LV-1007 Riga, Latvia.
  • Rudaka I; Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia.
Genes (Basel) ; 13(3)2022 03 15.
Article em En | MEDLINE | ID: mdl-35328073
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this "missing heritability". Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Genoma Mitocondrial Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Genes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Letônia País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Genoma Mitocondrial Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Genes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Letônia País de publicação: Suíça