Your browser doesn't support javascript.
loading
Trade-Off Analysis of Hardware Architectures for Channel-Quality Classification Models.
Torres-Alvarado, Alan; Morales-Rosales, Luis Alberto; Algredo-Badillo, Ignacio; López-Huerta, Francisco; Lobato-Baez, Mariana; López-Pimentel, Juan Carlos.
Afiliação
  • Torres-Alvarado A; Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico.
  • Morales-Rosales LA; Facultad de Ingeniería Civil, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico.
  • Algredo-Badillo I; Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico.
  • López-Huerta F; Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río, Veracruz 94294, Mexico.
  • Lobato-Baez M; Higher Technological Institute of Libres, Libres, Puebla 73780, Mexico.
  • López-Pimentel JC; Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Mexico City 45010, Mexico.
Sensors (Basel) ; 22(7)2022 Mar 24.
Article em En | MEDLINE | ID: mdl-35408115
The latest generation of communication networks, such as SDVN (Software-defined vehicular network) and VANETs (Vehicular ad-hoc networks), should evaluate their communication channels to adapt their behavior. The quality of the communication in data networks depends on the behavior of the transmission channel selected to send the information. Transmission channels can be affected by diverse problems ranging from physical phenomena (e.g., weather, cosmic rays) to interference or faults inherent to data spectra. In particular, if the channel has a good transmission quality, we might maximize the bandwidth use. Otherwise, although fault-tolerant schemes degrade the transmission speed by solving errors or failures should be included, these schemes spend more energy and are slower due to requesting lost packets (recovery). In this sense, one of the open problems in communications is how to design and implement an efficient and low-power-consumption mechanism capable of sensing the quality of the channel and automatically making the adjustments to select the channel over which transmit. In this work, we present a trade-off analysis based on hardware implementation to identify if a channel has a low or high quality, implementing four machine learning algorithms: Decision Trees, Multi-Layer Perceptron, Logistic Regression, and Support Vector Machines. We obtained the best trade-off with an accuracy of 95.01% and efficiency of 9.83 Mbps/LUT (LookUp Table) with a hardware implementation of a Decision Tree algorithm with a depth of five.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México País de publicação: Suíça