Your browser doesn't support javascript.
loading
Applied Machine Learning in Industry 4.0: Case-Study Research in Predictive Models for Black Carbon Emissions.
Rubio-Loyola, Javier; Paul-Fils, Wolph Ronald Shwagger.
Afiliação
  • Rubio-Loyola J; Centre for Research and Advanced Studies (Cinvestav), Ciudad Victoria 87130, Mexico.
  • Paul-Fils WRS; Centre for Research and Advanced Studies (Cinvestav), Ciudad Victoria 87130, Mexico.
Sensors (Basel) ; 22(10)2022 May 23.
Article em En | MEDLINE | ID: mdl-35632353
Industry 4.0 constitutes a major application domain for sensor data analytics. Industrial furnaces (IFs) are complex machines made with special thermodynamic materials and technologies used in industrial production applications that require special heat treatment cycles. One of the most critical issues while operating IFs is the emission of black carbon (EoBC), which is due to a large number of factors such as the quality and amount of fuel, furnace efficiency, technology used for the process, operation practices, type of loads and other aspects related to the process conditions or mechanical properties of fluids at furnace operation. This paper presents a methodological approach to predict EoBC during the operation of IFs with the use of predictive models of machine learning (ML). We make use of a real data set with historical operation to train ML models, and through evaluation with real data we identify the most suitable approach that best fits the characteristics of the data set and implementation constraints in real production environments. The evaluation results confirm that it is possible to predict the undesirable EoBC well in advance, by means of a predictive model. To the best of our knowledge, this paper is the first approach to detail machine-learning concepts for predicting EoBC in the IF industry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México País de publicação: Suíça