Your browser doesn't support javascript.
loading
Structure Detection in Three-Dimensional Cellular Cryoelectron Tomograms by Reconstructing Two-Dimensional Annotated Tilt Series.
Zeng, Xiangrui; Lin, Ziqian; Uddin, Mostofa Rafid; Zhou, Bo; Cheng, Chao; Zhang, Jing; Freyberg, Zachary; Xu, Min.
Afiliação
  • Zeng X; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
  • Lin Z; Department of Computer Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Uddin MR; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
  • Zhou B; School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA.
  • Cheng C; Department of Medicine, Institution of Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA.
  • Zhang J; Department of Computer Science, University of California, Irvine, Irvine, California, USA.
  • Freyberg Z; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
  • Xu M; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
J Comput Biol ; 29(8): 932-941, 2022 08.
Article em En | MEDLINE | ID: mdl-35862434
The revolutionary technique cryoelectron tomography (cryo-ET) enables imaging of cellular structure and organization in a near-native environment at submolecular resolution, which is vital to subsequent data analysis and modeling. The conventional structure detection process first reconstructs the three-dimensional (3D) tomogram from a series of two-dimensional (2D) projections and then directly detects subcellular components found within the tomogram. However, this process is challenging due to potential structural information loss during the tomographic reconstruction and the limited scope of existing methods since most major state-of-the-art object detection methods are designed for 2D rather than 3D images. Therefore, in this article, as an alternative approach to complement the conventional process, we propose a novel 2D-to-3D framework that detects structures within 2D projection images before reconstructing the results back to 3D. We implemented the proposed framework as three specific algorithms for three individual tasks: semantic segmentation, edge detection, and object localization. As experimental validation of the 2D-to-3D framework for cryo-ET data, we applied the algorithms to the segmentation of mitochondrial calcium phosphate granules, detection of spherical edges, and localization of mitochondria. Quantitative and qualitative results show better performance for prediction tasks of segmentation on the 2D projections and promising performance on object localization and edge detection, paving the way for future studies in the exploration of cryo-ET for in situ structural biology.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Tomografia com Microscopia Eletrônica Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research Idioma: En Revista: J Comput Biol Assunto da revista: BIOLOGIA MOLECULAR / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Tomografia com Microscopia Eletrônica Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research Idioma: En Revista: J Comput Biol Assunto da revista: BIOLOGIA MOLECULAR / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos