Your browser doesn't support javascript.
loading
A novel sEMG data augmentation based on WGAN-GP.
Coelho, Fabrício; Pinto, Milena F; Melo, Aurélio G; Ramos, Gabryel S; Marcato, André L M.
Afiliação
  • Coelho F; Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil.
  • Pinto MF; Federal Center for Technological Education of Rio de Janeiro (CEFET-RJ), Rio de Janeiro, Brazil.
  • Melo AG; Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil.
  • Ramos GS; Federal Center for Technological Education of Rio de Janeiro (CEFET-RJ), Rio de Janeiro, Brazil.
  • Marcato ALM; Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil.
Comput Methods Biomech Biomed Engin ; 26(9): 1008-1017, 2023 Sep.
Article em En | MEDLINE | ID: mdl-35862582
The classification of sEMG signals is fundamental in applications that use mechanical prostheses, making it necessary to work with generalist databases that improve the accuracy of those classifications. Therefore, synthetic signal generation can be beneficial in enriching a database to make it more generalist. This work proposes using a variant of generative adversarial networks to produce synthetic biosignals of sEMG. A convolutional neural network (CNN) was used to classify the movements. The results showed good performance with an increase of 4.07% in a set of movement classification accuracy when 200 synthetic samples were included for each movement. We compared our results to other methodologies, such as Magnitude Warping and Scaling. Both methodologies did not have the same performance in the classification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membros Artificiais / Redes Neurais de Computação Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membros Artificiais / Redes Neurais de Computação Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido