Your browser doesn't support javascript.
loading
Mining Public Opinions on COVID-19 Vaccination: A Temporal Analysis to Support Combating Misinformation.
de Carvalho, Victor Diogho Heuer; Nepomuceno, Thyago Celso Cavalcante; Poleto, Thiago; Turet, Jean Gomes; Costa, Ana Paula Cabral Seixas.
Afiliação
  • de Carvalho VDH; Eixo das Tecnologias, Campus do Sertão, Federal University of Alagoas, Delmiro Gouveia 57480-000, Brazil.
  • Nepomuceno TCC; Núcleo de Tecnologia, Centro Acadêmico do Agreste, Federal University of Pernambuco, Caruaru 55014-900, Brazil.
  • Poleto T; Departamento de Administração, Federal University of Pará, Belém 66075-110, Brazil.
  • Turet JG; Departamento de Engenharia de Produção, Federal University of Pernambuco, Recife 50740-550, Brazil.
  • Costa APCS; Departamento de Engenharia de Produção, Federal University of Pernambuco, Recife 50740-550, Brazil.
Trop Med Infect Dis ; 7(10)2022 Sep 22.
Article em En | MEDLINE | ID: mdl-36287997
This article presents a study that applied opinion analysis about COVID-19 immunization in Brazil. An initial set of 143,615 tweets was collected containing 49,477 pro- and 44,643 anti-vaccination and 49,495 neutral posts. Supervised classifiers (multinomial naïve Bayes, logistic regression, linear support vector machines, random forests, adaptative boosting, and multilayer perceptron) were tested, and multinomial naïve Bayes, which had the best trade-off between overfitting and correctness, was selected to classify a second set containing 221,884 unclassified tweets. A timeline with the classified tweets was constructed, helping to identify dates with peaks in each polarity and search for events that may have caused the peaks, providing methodological assistance in combating sources of misinformation linked to the spread of anti-vaccination opinion.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Trop Med Infect Dis Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Trop Med Infect Dis Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça