Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis.
Schizophrenia (Heidelb)
; 8(1): 105, 2022 Nov 25.
Article
em En
| MEDLINE
| ID: mdl-36433979
Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like ideation to explain this experience. These results highlight the value of computational models for understanding the pathophysiological mechanisms of psychosis.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Schizophrenia (Heidelb)
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Canadá
País de publicação:
Alemanha