Your browser doesn't support javascript.
loading
ChiMera: an easy to use pipeline for bacterial genome based metabolic network reconstruction, evaluation and visualization.
Tamasco, Gustavo; Kumar, Manish; Zengler, Karsten; Silva-Rocha, Rafael; da Silva, Ricardo Roberto.
Afiliação
  • Tamasco G; Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil. gustavo.tamasco@usp.br.
  • Kumar M; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
  • Zengler K; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
  • Silva-Rocha R; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
  • da Silva RR; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
BMC Bioinformatics ; 23(1): 512, 2022 Nov 30.
Article em En | MEDLINE | ID: mdl-36451100
BACKGROUND: Genome-scale metabolic reconstruction tools have been developed in the last decades. They have helped to reconstruct eukaryotic and prokaryotic metabolic models, which have contributed to fields, e.g., genetic engineering, drug discovery, prediction of phenotypes, and other model-driven discoveries. However, the use of these programs requires a high level of bioinformatic skills. Moreover, the functionalities required to build models are scattered throughout multiple tools, requiring knowledge and experience for utilizing several tools. RESULTS: Here we present ChiMera, which combines tools used for model reconstruction, prediction, and visualization. ChiMera uses CarveMe in the reconstruction module, generating a gap-filled draft reconstruction able to produce growth predictions using flux balance analysis for gram-positive and gram-negative bacteria. ChiMera also contains two modules for metabolic network visualization. The first module generates maps for the most important pathways, e.g., glycolysis, nucleotides and amino acids biosynthesis, fatty acid oxidation and biosynthesis and core-metabolism. The second module produces a genome-wide metabolic map, which can be used to retrieve KEGG pathway information for each compound in the model. A module to investigate gene essentiality and knockout is also present. CONCLUSIONS: Overall, ChiMera uses automation algorithms to combine a variety of tools to automatically perform model creation, gap-filling, flux balance analysis (FBA), and metabolic network visualization. ChiMera models readily provide metabolic insights that can aid genetic engineering projects, prediction of phenotypes, and model-driven discoveries.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias Gram-Negativas / Antibacterianos Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias Gram-Negativas / Antibacterianos Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido