Your browser doesn't support javascript.
loading
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis.
Rosa, Tiago Gaspar da; Melani, Arthur Henrique de Andrade; Pereira, Fabio Henrique; Kashiwagi, Fabio Norikazu; Souza, Gilberto Francisco Martha de; Salles, Gisele Maria De Oliveira.
Afiliação
  • Rosa TGD; Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-010, SP, Brazil.
  • Melani AHA; Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-010, SP, Brazil.
  • Pereira FH; Informatics and Knowledge Management Graduate Program, Universidade Nove de Julho, São Paulo 01525-000, SP, Brazil.
  • Kashiwagi FN; Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-010, SP, Brazil.
  • Souza GFM; Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-010, SP, Brazil.
  • Salles GMO; Companhia Paranaense de Energia-COPEL, Curitiba 80420-170, SP, Brazil.
Sensors (Basel) ; 22(24)2022 Dec 12.
Article em En | MEDLINE | ID: mdl-36560107
This paper presents a generic framework for fault prognosis using autoencoder-based deep learning methods. The proposed approach relies upon a semi-supervised extrapolation of autoencoder reconstruction errors, which can deal with the unbalanced proportion between faulty and non-faulty data in an industrial context to improve systems' safety and reliability. In contrast to supervised methods, the approach requires less manual data labeling and can find previously unknown patterns in data. The technique focuses on detecting and isolating possible measurement divergences and tracking their growth to signalize a fault's occurrence while individually evaluating each monitored variable to provide fault detection and prognosis. Additionally, the paper also provides an appropriate set of metrics to measure the accuracy of the models, which is a common disadvantage of unsupervised methods due to the lack of predefined answers during training. Computational results using the Commercial Modular Aero Propulsion System Simulation (CMAPSS) monitoring data show the effectiveness of the proposed framework.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Benchmarking Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Benchmarking Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça