Your browser doesn't support javascript.
loading
Synthesis of a reactive lignin-based flame retardant and its application in phenolic foam.
Zhou, Minghao; Zhong, Lei; Hu, Lihong; Zhou, Yonghong; Yang, Xiaohui.
Afiliação
  • Zhou M; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People's Republic of China.
  • Zhong L; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People's Republic of China.
  • Hu L; Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Adm
  • Zhou Y; Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Adm
  • Yang X; Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Adm
Environ Technol ; : 1-13, 2023 Feb 20.
Article em En | MEDLINE | ID: mdl-36751900
To improve the flame retardancy of phenolic foam from the perspective of sustainable development, it is a feasible way to add bio-based flame retardants into phenolic foam. Lignin has a similar structure to phenol, which provides a possibility to replace part of phenol. In this paper, we prepared a kind of reactive bio-based flame retardant based on enzymatic hydrolyzed lignin, in which side chain was chemically grafted with phosphorus and nitrogen and benzene ring would participate in the phenolic condensation reaction. According to elemental analysis and ICP-OES data, the content of nitrogen and phosphorus in modified lignin (NP-L) increased to 2.95% and 3.55% respectively. Compared with original lignin, the carbon residue rate of NP-L increased from 3.25% to 12.13% because of the presence of flame retardant elements N and P. Then lignin-based flame retardant was used to replace phenol for modifying phenolic foams (NPLPFX). The limited oxygen index (LOI) and compressive strength of phenolic foam were improved effectively by adding modified lignin when the substitution rate was less than 25%. The LOI and compressive strength of the modified phenolic foam with 5% replacement amount (NPLPF5) are 55.6% and 0.24 MPa, which increased by 88% and 60% compared with pure phenolic foam. The cone calorimetric data also showed that NPLPF5 had good flame retardancy, and the peak heat release rate and total heat release were significantly lower than PF. This work suggests a novel green strategy for improving the flame retardancy performance of phenolic foam and promoting the utilization of lignin.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Technol Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Technol Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Reino Unido