Your browser doesn't support javascript.
loading
Evaluating deep learning predictions for COVID-19 from X-ray images using leave-one-out predictive densities.
Hernández, Sergio; López-Córtes, Xaviera.
Afiliação
  • Hernández S; Departamento de Computación en Industrias. Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, 100190 Talca, Maule, Chile.
  • López-Córtes X; Departamento de Computación en Industrias. Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, 100190 Talca, Maule, Chile.
Neural Comput Appl ; 35(13): 9819-9830, 2023.
Article em En | MEDLINE | ID: mdl-36778196
Early detection of the COVID-19 virus is an important task for controlling the spread of the pandemic. Imaging techniques such as chest X-ray are relatively inexpensive and accessible, but its interpretation requires expert knowledge to evaluate the disease severity. Several approaches for automatic COVID-19 detection using deep learning techniques have been proposed. While most approaches show high accuracy on the COVID-19 detection task, there is not enough evidence on external evaluation for this technique. Furthermore, data scarcity and sampling biases make difficult to properly evaluate model predictions. In this paper, we propose stochastic gradient Langevin dynamics (SGLD) to take into account the model uncertainty. Four different deep learning architectures are trained using SGLD and compared to their baselines using stochastic gradient descent. The model uncertainties are also evaluated according to their convergence properties and the leave-one-out predictive densities. The proposed approach is able to reduce overconfidence of the baseline estimators while also retaining predictive accuracy for the best-performing cases.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Neural Comput Appl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Chile País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Neural Comput Appl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Chile País de publicação: Reino Unido