Your browser doesn't support javascript.
loading
Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset.
de Paiva, Bruno Barbosa Miranda; Pereira, Polianna Delfino; de Andrade, Claudio Moisés Valiense; Gomes, Virginia Mara Reis; Souza-Silva, Maira Viana Rego; Martins, Karina Paula Medeiros Prado; Sales, Thaís Lorenna Souza; de Carvalho, Rafael Lima Rodrigues; Pires, Magda Carvalho; Ramos, Lucas Emanuel Ferreira; Silva, Rafael Tavares; de Freitas Martins Vieira, Alessandra; Nunes, Aline Gabrielle Sousa; de Oliveira Jorge, Alzira; de Oliveira Maurílio, Amanda; Scotton, Ana Luiza Bahia Alves; da Silva, Carla Thais Candida Alves; Cimini, Christiane Corrêa Rodrigues; Ponce, Daniela; Pereira, Elayne Crestani; Manenti, Euler Roberto Fernandes; Rodrigues, Fernanda d'Athayde; Anschau, Fernando; Botoni, Fernando Antônio; Bartolazzi, Frederico; Grizende, Genna Maira Santos; Noal, Helena Carolina; Duani, Helena; Gomes, Isabela Moraes; Costa, Jamille Hemétrio Salles Martins; di Sabatino Santos Guimarães, Júlia; Tupinambás, Julia Teixeira; Rugolo, Juliana Machado; Batista, Joanna d'Arc Lyra; de Alvarenga, Joice Coutinho; Chatkin, José Miguel; Ruschel, Karen Brasil; Zandoná, Liege Barella; Pinheiro, Lílian Santos; Menezes, Luanna Silva Monteiro; de Oliveira, Lucas Moyses Carvalho; Kopittke, Luciane; Assis, Luisa Argolo; Marques, Luiza Margoto; Raposo, Magda Cesar; Floriani, Maiara Anschau; Bicalho, Maria Aparecida Camargos; Nogueira, Matheus Carvalho Alves; de Oliveira, Neimy Ramos; Ziegelmann, Patricia Klarmann.
Afiliação
  • de Paiva BBM; Computer Science Department, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Brazil.
  • Pereira PD; Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Brazil.
  • de Andrade CMV; Institute for Health Technology Assessment (IATS/ CNPq), R. Ramiro Barcelos, 2359, building 21, room 507, Porto Alegre, Brazil.
  • Gomes VMR; Computer Science Department, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Brazil.
  • Souza-Silva MVR; Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, room 246, Belo Horizonte, Brazil.
  • Martins KPMP; Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, room 246, Belo Horizonte, Brazil.
  • Sales TLS; Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, room 246, Belo Horizonte, Brazil.
  • de Carvalho RLR; Universidade Federal de São João del-Rei, R. Sebastião Gonçalves Coelho, 400, Divinópolis, Brazil.
  • Pires MC; Institute for Health Technology Assessment (IATS/ CNPq), R. Ramiro Barcelos, 2359, building 21, room 507, Porto Alegre, Brazil.
  • Ramos LEF; Department of Statistics, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, ICEx, room 4071, Belo Horizonte, Brazil.
  • Silva RT; Department of Statistics, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, ICEx, room 4071, Belo Horizonte, Brazil.
  • de Freitas Martins Vieira A; Department of Statistics, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, ICEx, room 4071, Belo Horizonte, Brazil.
  • Nunes AGS; Faculdade de Ciências Médicas de Minas Gerais, Al. Ezequiel Dias, 275, Belo Horizonte, Brazil.
  • de Oliveira Jorge A; Hospital UNIMED BH, Av. Do Contorno, 3097, Belo Horizonte, Brazil.
  • de Oliveira Maurílio A; Hospital Risoleta Tolentino Neves, R. das Gabirobas, 01, Belo Horizonte, Brazil.
  • Scotton ALBA; Hospital São João de Deus, R. do Cobre, 800, São João de Deus, Brazil.
  • da Silva CTCA; Hospital Regional Antônio Dias, R. Maj. Gote, 1231, Patos de Minas, Brazil.
  • Cimini CCR; Hospital Santo Antônio, Pç. Dr. Márcio Carvalho Lopes Filho, 501, Curvelo, Brazil.
  • Ponce D; Hospital Santa Rosália, R. Dr. Onófre, 575, Teófilo Otoni, Brazil.
  • Pereira EC; Faculdade de Medicina de Botucatu-Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. Prof. Mário Rubens Guimarães Montenegro, s/n-UNESP-Campus de Botucatu, Botucatu, Brazil.
  • Manenti ERF; Hospital SOS Cárdio, Rod. SC-401, 121, Florianópolis, Brazil.
  • Rodrigues FD; Hospital Mãe de Deus, R. José de Alencar, 286, Porto Alegre, Brazil.
  • Anschau F; Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, Brazil.
  • Botoni FA; Hospital Nossa Senhora da Conceição and Hospital Cristo Redentor, Av. Francisco Trein, 326, Porto Alegre, Brazil.
  • Bartolazzi F; Hospital Julia Kubitschek, R. Dr. Cristiano Rezende, 2745, Belo Horizonte, Brazil.
  • Grizende GMS; Hospital Santo Antônio, Pç. Dr. Márcio Carvalho Lopes Filho, 501, Curvelo, Brazil.
  • Noal HC; Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales, 1111, Belo Horizonte, Brazil.
  • Duani H; Universidade Federal de Santa Maria/Hospital Universitário/EBSERH, Av. Roraima, 1000, building 22, Santa Maria, Brazil.
  • Gomes IM; Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, room 246, Belo Horizonte, Brazil.
  • Costa JHSM; Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, room 246, Belo Horizonte, Brazil.
  • di Sabatino Santos Guimarães J; Hospital Márcio Cunha, Av. Kiyoshi Tsunawaki, 48, Ipatinga, Brazil.
  • Tupinambás JT; Hospital Julia Kubitschek, R. Dr. Cristiano Rezende, 2745, Belo Horizonte, Brazil.
  • Rugolo JM; Hospital Metropolitano Odilon Behrens, R. Formiga, 50, Belo Horizonte, Brazil.
  • Batista JDL; Faculdade de Medicina de Botucatu-Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. Prof. Mário Rubens Guimarães Montenegro, s/n-UNESP-Campus de Botucatu, Botucatu, Brazil.
  • de Alvarenga JC; Universidade Federal da Fronteira Sul, Av. Fernando Machado, 108E, Chapecó, Brazil.
  • Chatkin JM; Hospital João XXIII, Av. Professor Alfredo Balena, 400, Belo Horizonte, Brazil.
  • Ruschel KB; Hospital São Lucas PUCRS, Av. Ipiranga, 6690, Porto Alegre, Brazil.
  • Zandoná LB; Hospital Mãe de Deus, R. José de Alencar, 286, Porto Alegre, Brazil.
  • Pinheiro LS; Hospital Bruno Born, Av. Benjamin Constant, 881, Lajeado, Brazil.
  • Menezes LSM; Hospital Santa Rosália, R. Dr. Onófre, 575, Teófilo Otoni, Brazil.
  • de Oliveira LMC; Hospital Metropolitano Odilon Behrens, R. Formiga, 50, Belo Horizonte, Brazil.
  • Kopittke L; Hospital Luxemburgo, R. Gentios, 1350, Belo Horizonte, Brazil.
  • Assis LA; Hospital Universitário Ciências Médicas, R. dos Aimorés, 2896, Belo Horizonte, Brazil.
  • Marques LM; Hospital Nossa Senhora da Conceição and Hospital Cristo Redentor, Av. Francisco Trein, 326, Porto Alegre, Brazil.
  • Raposo MC; Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, Belo Horizonte, Brazil.
  • Floriani MA; Faculdade de Ciências Médicas de Minas Gerais, Al. Ezequiel Dias, 275, Belo Horizonte, Brazil.
  • Bicalho MAC; Universidade Federal de São João del-Rei, R. Sebastião Gonçalves Coelho, 400, Divinópolis, Brazil.
  • Nogueira MCA; Hospital Moinhos de Vento, R. Ramiro Barcelos, 910, Porto Alegre, Brazil.
  • de Oliveira NR; Moinhos Research Institute, 910 Ramiro Barcelos Street, 5 floor, Porto Alegre, Brazil.
  • Ziegelmann PK; Fundação Hospitalar do Estado de Minas Gerais-FHEMIG, Cidade Administrativa de Minas Gerais, Edifício Gerais, 13rd floor, Rod. Papa João Paulo II, 3777, Belo Horizonte, Brazil.
Sci Rep ; 13(1): 3463, 2023 03 01.
Article em En | MEDLINE | ID: mdl-36859446
The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering multiple techniques to build mortality prediction models, including modern machine learning (neural) algorithms and traditional statistical techniques, as well as meta-learning (ensemble) approaches. This study used a dataset from a multicenter cohort of 10,897 adult Brazilian COVID-19 patients, admitted from March/2020 to November/2021, including patients [median age 60 (interquartile range 48-71), 46% women]. We also proposed new original population-based meta-features that have not been devised in the literature. Stacking has shown to achieve the best results reported in the literature for the death prediction task, improving over previous state-of-the-art by more than 46% in Recall for predicting death, with AUROC 0.826 and MacroF1 of 65.4%. The newly proposed meta-features were highly discriminative of death, but fell short in producing large improvements in final prediction performance, demonstrating that we are possibly on the limits of the prediction capabilities that can be achieved with the current set of ML techniques and (meta-)features. Finally, we investigated how the trained models perform on different hospitals, showing that there are indeed large differences in classifier performance between different hospitals, further making the case that errors are produced by factors that cannot be modeled with the current predictors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged País/Região como assunto: America do sul / Brasil Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged País/Região como assunto: America do sul / Brasil Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido