Your browser doesn't support javascript.
loading
Soft Electromagnetic Motor and Soft Magnetic Sensors for Synchronous Rotary Motion.
Kohls, Noah D; Balak, Roman; Ruddy, Bryan P; Mazumdar, Yi Chen.
Afiliação
  • Kohls ND; School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
  • Balak R; School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
  • Ruddy BP; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
  • Mazumdar YC; School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
Soft Robot ; 10(5): 912-922, 2023 Oct.
Article em En | MEDLINE | ID: mdl-36976757
To create fully-soft robots, fully-soft actuators are needed. Currently, soft rotary actuator topologies described in the literature exhibit low rotational speeds, which limit their applicability. In this work, we describe a novel, fully-soft synchronous rotary electromagnetic actuator and soft magnetic contact switch sensor concept. In this study, the actuator is constructed using gallium indium liquid metal conductors, compliant permanent magnetic composites, carbon black powders, and flexible polymers. The actuator also operates using low voltages (<20 V, ≤10 A), has a bandwidth of 10 Hz, a stall torque of 2.5-3 mN·m, and no-load speed of up to 4000 rpm. These values show that the actuator rotates at over two orders-of-magnitude higher speed with at least one order-of-magnitude higher output power than previously developed soft rotary actuators. This unique soft rotary motor is operated in a manner similar to traditional hard motors, but is also able to stretch and deform to enable new soft robot functions. To demonstrate fully-soft actuator application concepts, the motor is incorporated into a fully-soft air blower, fully-soft underwater propulsion system, fully-soft water pump, and squeeze-based sensor for a fully-soft fan. Hybrid hard and soft applications were also tested, including a geared robotic car, pneumatic actuator, and hydraulic pump. Overall, this work demonstrates how the fully-soft rotary electromagnetic actuator can bridge the gap between the capabilities of traditional hard motors and novel soft actuator concepts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Robot Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Robot Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos