Your browser doesn't support javascript.
loading
Deep learning-based detection of patients with bone metastasis from Japanese radiology reports.
Doi, Kentaro; Takegawa, Hideki; Yui, Midori; Anetai, Yusuke; Koike, Yuhei; Nakamura, Satoaki; Tanigawa, Noboru; Koziumi, Masahiko; Nishio, Teiji.
Afiliação
  • Doi K; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan.
  • Takegawa H; Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
  • Yui M; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan. takegawh@hirakata.kmu.ac.jp.
  • Anetai Y; Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan. takegawh@hirakata.kmu.ac.jp.
  • Koike Y; Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan. takegawh@hirakata.kmu.ac.jp.
  • Nakamura S; Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
  • Tanigawa N; Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
  • Koziumi M; Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
  • Nishio T; Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
Jpn J Radiol ; 41(8): 900-908, 2023 Aug.
Article em En | MEDLINE | ID: mdl-36988827
PURPOSE: Deep learning (DL) is a state-of-the-art technique for developing artificial intelligence in various domains and it improves the performance of natural language processing (NLP). Therefore, we aimed to develop a DL-based NLP model that classifies the status of bone metastasis (BM) in radiology reports to detect patients with BM. MATERIALS AND METHODS: The DL-based NLP model was developed by training long short-term memory using 1,749 free-text radiology reports written in Japanese. We adopted five-fold cross-validation and used 200 reports for testing the five models. The accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristics curve (AUROC) were used for the model evaluation. RESULTS: The developed model demonstrated classification performance with mean ± standard deviation of 0.912 ± 0.012, 0.924 ± 0.029, 0.901 ± 0.014, 0.898 ± 0.012, and 0.968 ± 0.004 for accuracy, sensitivity, specificity, precision, and AUROC, respectively. CONCLUSION: The proposed DL-based NLP model may help in the early and efficient detection of patients with BM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radiologia / Neoplasias Ósseas / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Jpn J Radiol Assunto da revista: DIAGNOSTICO POR IMAGEM / RADIOLOGIA / RADIOTERAPIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão País de publicação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radiologia / Neoplasias Ósseas / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Jpn J Radiol Assunto da revista: DIAGNOSTICO POR IMAGEM / RADIOLOGIA / RADIOTERAPIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão País de publicação: Japão