Your browser doesn't support javascript.
loading
Influence of Data Augmentation Strategies on the Segmentation of Oral Histological Images Using Fully Convolutional Neural Networks.
Dos Santos, Dalí F D; de Faria, Paulo R; Travençolo, Bruno A N; do Nascimento, Marcelo Z.
Afiliação
  • Dos Santos DFD; Faculty of Computer Science, Federal University of Uberlândia, Brazil and Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil. dalifreire@gmail.com.
  • de Faria PR; Faculty of Computer Science, Federal University of Uberlândia, Brazil and Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil.
  • Travençolo BAN; Faculty of Computer Science, Federal University of Uberlândia, Brazil and Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil.
  • do Nascimento MZ; Faculty of Computer Science, Federal University of Uberlândia, Brazil and Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil.
J Digit Imaging ; 36(4): 1608-1623, 2023 08.
Article em En | MEDLINE | ID: mdl-37012446
Segmentation of tumor regions in H &E-stained slides is an important task for a pathologist while diagnosing different types of cancer, including oral squamous cell carcinoma (OSCC). Histological image segmentation is often constrained by the availability of labeled training data since labeling histological images is a highly skilled, complex, and time-consuming task. Thus, data augmentation strategies become essential to train convolutional neural networks models to overcome the overfitting problem when only a few training samples are available. This paper proposes a new data augmentation strategy, named Random Composition Augmentation (RCAug), to train fully convolutional networks (FCN) to segment OSCC tumor regions in H &E-stained histological images. Given the input image and their corresponding label, a pipeline with a random composition of geometric, distortion, color transfer, and generative image transformations is executed on the fly. Experimental evaluations were performed using an FCN-based method to segment OSCC regions through a set of different data augmentation transformations. By using RCAug, we improved the FCN-based segmentation method from 0.51 to 0.81 of intersection-over-union (IOU) in a whole slide image dataset and from 0.65 to 0.69 of IOU in a tissue microarray images dataset.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Carcinoma de Células Escamosas Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Carcinoma de Células Escamosas Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos