Your browser doesn't support javascript.
loading
Ultrastructural calibration model for proficiency testing.
Aoki, Reiko; Leão, Dorival; Bustamante, Juan P Mamani; Vilca, Filidor.
Afiliação
  • Aoki R; Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos - SP, Brazil.
  • Leão D; Estatcamp Consultoria, São Carlos - SP, Brazil.
  • Bustamante JPM; Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos - SP, Brazil.
  • Vilca F; Instituto de Matemática, Estatística e Computação Científica, Universidade de Campinas, Campinas - SP, Brazil.
J Appl Stat ; 50(5): 1037-1059, 2023.
Article em En | MEDLINE | ID: mdl-37065622
Proficiency testing (PT) determines the performance of individual laboratories for specific tests or measurements and it is used to monitor the reliability of laboratories measurements. PT plays a highly valuable role as it provides objective evidence of the competence of the participant laboratories. In this paper, we propose a multivariate calibration model to assess equivalence among laboratories measurements in PT. Our method allows to deal with multivariate data, where the item under test is measured at different levels. Although intuitive, the proposed model is nonergodic, which means that the asymptotic Fisher information matrix is random. As a consequence, a detailed asymptotic analysis was carried out to establish the strategy for comparing the results of the participating laboratories. To illustrate, we apply our method to analyze the data from the Brazilian engine test group, PT program, where the power of an engine was measured by eight laboratories at several levels of rotation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Appl Stat Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Appl Stat Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido