Your browser doesn't support javascript.
loading
Machine learning for observational cosmology.
Moriwaki, Kana; Nishimichi, Takahiro; Yoshida, Naoki.
Afiliação
  • Moriwaki K; Research Center for the Early Universe, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
  • Nishimichi T; Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
  • Yoshida N; Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan.
Rep Prog Phys ; 86(7)2023 May 26.
Article em En | MEDLINE | ID: mdl-37146601
An array of large observational programs using ground-based and space-borne telescopes is planned in the next decade. The forthcoming wide-field sky surveys are expected to deliver a sheer volume of data exceeding an exabyte. Processing the large amount of multiplex astronomical data is technically challenging, and fully automated technologies based on machine learning (ML) and artificial intelligence are urgently needed. Maximizing scientific returns from the big data requires community-wide efforts. We summarize recent progress in ML applications in observational cosmology. We also address crucial issues in high-performance computing that are needed for the data processing and statistical analysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rep Prog Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rep Prog Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão País de publicação: Reino Unido