High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose.
Int J Biol Macromol
; 242(Pt 4): 125053, 2023 Jul 01.
Article
em En
| MEDLINE
| ID: mdl-37244329
In this study, a simple and scalable mechanical pretreatment was evaluated as means of enhancing the accessibility of cellulose fibers, with the objective of improving the efficiency of enzymatic reactions for the production of cellulose nanoparticles (CNs). In addition, the effects of enzyme type (endoglucanase - EG, endoxylanase - EX, and a cellulase preparation - CB), composition ratio (0-200UEG:0-200UEX or EG, EX, and CB alone), and loading (0 U-200 U) were investigated in relation to CN yield, morphology, and properties. The combination of mechanical pretreatment and specific enzymatic hydrolysis conditions substantially improved CN production yield, reaching up to 83 %. The production of rod-like or spherical nanoparticles and their chemical composition were highly influenced by the enzyme type, composition ratio, and loading. However, these enzymatic conditions had minimal impact on the crystallinity index (approximately 80 %) and thermal stability (Tmax within 330-355 °C). Overall, these findings demonstrate that mechanical pretreatment followed by enzymatic hydrolysis under specific conditions is a suitable method to produce nanocellulose with high yield and adjustable properties such as purity, rod-like or spherical forms, high thermal stability, and high crystallinity. Therefore, this production approach shows promise in producing tailored CNs with the potential for superior performance in various advanced applications, including, but not limited to, wound dressings, drug delivery, thermoplastic composites, 3D (bio)printing, and smart packaging.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Celulase
/
Nanopartículas
Idioma:
En
Revista:
Int J Biol Macromol
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Holanda