Your browser doesn't support javascript.
loading
Cooperative Multiband Spectrum Sensing Using Radio Environment Maps and Neural Networks.
Molina-Tenorio, Yanqueleth; Prieto-Guerrero, Alfonso; Aguilar-Gonzalez, Rafael; Lopez-Benitez, Miguel.
Afiliação
  • Molina-Tenorio Y; Information Science and Technology Ph.D., Metropolitan Autonomous University, Mexico City 09360, Mexico.
  • Prieto-Guerrero A; Electrical Engineering Department, Metropolitan Autonomous University, Mexico City 09360, Mexico.
  • Aguilar-Gonzalez R; Faculty of Science, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico.
  • Lopez-Benitez M; Engineering Department, Arkansas State University Campus Queretaro, Queretaro 76270, Mexico.
Sensors (Basel) ; 23(11)2023 May 30.
Article em En | MEDLINE | ID: mdl-37299936
Cogitive radio networks (CRNs) require high capacity and accuracy to detect the presence of licensed or primary users (PUs) in the sensed spectrum. In addition, they must correctly locate the spectral opportunities (holes) in order to be available to nonlicensed or secondary users (SUs). In this research, a centralized network of cognitive radios for monitoring a multiband spectrum in real time is proposed and implemented in a real wireless communication environment through generic communication devices such as software-defined radios (SDRs). Locally, each SU uses a monitoring technique based on sample entropy to determine spectrum occupancy. The determined features (power, bandwidth, and central frequency) of detected PUs are uploaded to a database. The uploaded data are then processed by a central entity. The objective of this work was to determine the number of PUs, their carrier frequency, bandwidth, and the spectral gaps in the sensed spectrum in a specific area through the construction of radioelectric environment maps (REMs). To this end, we compared the results of classical digital signal processing methods and neural networks performed by the central entity. Results show that both proposed cognitive networks (one working with a central entity using typical signal processing and one performing with neural networks) accurately locate PUs and give information to SUs to transmit, avoiding the hidden terminal problem. However, the best-performing cognitive radio network was the one working with neural networks to accurately detect PUs on both carrier frequency and bandwidth.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes de Comunicação de Computadores / Tecnologia sem Fio Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes de Comunicação de Computadores / Tecnologia sem Fio Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México País de publicação: Suíça