Your browser doesn't support javascript.
loading
Using Controlled Feeding Study for Biomarker Development in Regression Calibration for Disease Association Estimation.
Zheng, Cheng; Zhang, Yiwen; Huang, Ying; Prentice, Ross.
Afiliação
  • Zheng C; Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Zhang Y; Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, 53205, USA.
  • Huang Y; Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  • Prentice R; Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Stat Biosci ; 15(1): 57-113, 2023 Apr.
Article em En | MEDLINE | ID: mdl-37324058
Correction for systematic measurement error in self-reported data is an important challenge in association studies of dietary intake and chronic disease risk. The regression calibration method has been used for this purpose when an objectively measured biomarker is available. However, a big limitation of the regression calibration method is that biomarkers have only been developed for a few dietary components. We propose new methods to use controlled feeding studies to develop valid biomarkers for many more dietary components and to estimate the diet disease associations. Asymptotic distribution theory for the proposed estimators is derived. Extensive simulation is performed to study the finite sample performance of the proposed estimators. We applied our method to examine the associations between the sodium/potassium intake ratio and cardiovascular disease incidence using the Women's Health Initiative cohort data. We discovered positive associations between sodium/potassium ratio and the risks of coronary heart disease, nonfatal myocardial infarction, coronary death, ischemic stroke, and total cardiovascular disease.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Idioma: En Revista: Stat Biosci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Idioma: En Revista: Stat Biosci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos