Your browser doesn't support javascript.
loading
Investigating the Transformation Products of Selected Antibiotics and 17 α-Ethinylestradiol under Three In Vitro Biotransformation Models for Anticipating Their Relevance in Bioaugmented Constructed Wetlands.
Alderete, Lucas Sosa; Sauvêtre, Andrés; Chiron, Serge; Tadic, Dorde.
Afiliação
  • Alderete LS; Institute of Environmental Biotechnology and Health, INBIAS-CONICET, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina.
  • Sauvêtre A; HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France.
  • Chiron S; HSM, University Montpellier, IMT Mines Ales, CNRS, IRD, 30100 Ales, France.
  • Tadic D; HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France.
Toxics ; 11(6)2023 Jun 05.
Article em En | MEDLINE | ID: mdl-37368608
The degradation of three antibiotics (sulfamethoxazole, trimethoprim, and ofloxacin) and one synthetic hormone (17 α-ethinylestradiol) was investigated in three in-vitro biotransformation models (i.e., pure enzymes, hairy root, and Trichoderma asperellum cultures) for anticipating the relevance of the formation of transformation products (TPs) in constructed wetlands (CWs) bioaugmented with T. asperellum fungus. The identification of TPs was carried out employing high-resolution mass spectrometry, using databases, or by interpreting MS/MS spectra. An enzymatic reaction with ß-glucosidase was also used to confirm the presence of glycosyl-conjugates. The results showed synergies in the transformation mechanisms between these three models. Phase II conjugation reactions and overall glycosylation reactions predominated in hairy root cultures, while phase I metabolization reactions (e.g., hydroxylation and N-dealkylation) predominated in T. asperellum cultures. Following their accumulation/degradation kinetic profiles helped in determining the most relevant TPs. Identified TPs contributed to the overall residual antimicrobial activity because phase I metabolites can be more reactive and glucose-conjugated TPs can be transformed back into parent compounds. Similar to other biological treatments, the formation of TPs in CWs is of concern and deserves to be investigated with simple in vitro models to avoid the complexity of field-scale studies. This paper brings new findings on the emerging pollutants metabolic pathways established between T. asperellum and model plants, including extracellular enzymes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Toxics Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Argentina País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Toxics Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Argentina País de publicação: Suíça