Your browser doesn't support javascript.
loading
CBIR-SAR System Using Stochastic Distance.
Sousa, Alcilene Dalília; Silva, Pedro Henrique Dos Santos; Silva, Romuere Rodrigues Veloso; Rodrigues, Francisco Alixandre Àvila; Medeiros, Fatima Nelsizeuma Sombra.
Afiliação
  • Sousa AD; Informatics Systems, Federal University of Piaui, Picos 64607-825, Piaui, Brazil.
  • Silva PHDS; Teleinformatics Engineering, Federal University of Ceara, Fortaleza 60455-970, Ceara, Brazil.
  • Silva RRV; Computer Engineering, Federal University of Ceara, Fortaleza 60455-970, Ceara, Brazil.
  • Rodrigues FAÀ; Informatics Systems, Federal University of Piaui, Picos 64607-825, Piaui, Brazil.
  • Medeiros FNS; Computational Mathematics, Federal University of Cariri, Juazeiro do Norte 63048-080, Ceara, Brazil.
Sensors (Basel) ; 23(13)2023 Jul 01.
Article em En | MEDLINE | ID: mdl-37447929
This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness (α^) and scale (γ^) parameters of the GI0 distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radar / Florestas Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Radar / Florestas Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça