3D Hollow Hierarchical Porous Carbon with Fe-N4 -OH Single-Atom Sites for High-Performance Zn-Air Batteries.
Small
; 19(48): e2302464, 2023 Nov.
Article
em En
| MEDLINE
| ID: mdl-37594730
The development of innovative and efficient Fe-N-C catalysts is crucial for the widespread application of zinc-air batteries (ZABs), where the inherent oxygen reduction reaction (ORR) activity of Fe single-atom sites needs to be optimized to meet the practical application. Herein, a three-dimensional (3D) hollow hierarchical porous electrocatalyst (ZIF8@FePMPDA-920) rich in asymmetric Fe-N4 -OH moieties as the single atomic sites is reported. The Fe center is in a penta-coordinated geometry with four N atoms and one O atom to form Fe-N4 -OH configuration. Compared to conventional Fe-N4 configuration, this unique structure can weaken the adsorption of intermediates by reducing the electron density of the Fe center for oxygen binding, which decreases the energy barrier of the rate-determining steps (RDS) to accelerate the ORR and oxygen evolution reaction (OER) processes for ZABs. The rechargeable liquid ZABs (LZABs) equipped with ZIF8@FePMPDA-920 display a high power density of 123.11 mW cm-2 and a long cycle life (300 h). The relevant flexible all-solid-state ZABs (FASSZABs) also display outstanding foldability and cyclical stability. This work provides a new perspective for the structural design of single-atom catalysts in the energy conversion and storage areas.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Small
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Alemanha