Your browser doesn't support javascript.
loading
A law of data separation in deep learning.
He, Hangfeng; Su, Weijie J.
Afiliação
  • He H; Department of Computer Science, University of Rochester, Rochester, NY 14627.
  • Su WJ; Goergen Institute for Data Science, University of Rochester, Rochester, NY 14627.
Proc Natl Acad Sci U S A ; 120(36): e2221704120, 2023 Sep 05.
Article em En | MEDLINE | ID: mdl-37639604
While deep learning has enabled significant advances in many areas of science, its black-box nature hinders architecture design for future artificial intelligence applications and interpretation for high-stakes decision-makings. We addressed this issue by studying the fundamental question of how deep neural networks process data in the intermediate layers. Our finding is a simple and quantitative law that governs how deep neural networks separate data according to class membership throughout all layers for classification. This law shows that each layer improves data separation at a constant geometric rate, and its emergence is observed in a collection of network architectures and datasets during training. This law offers practical guidelines for designing architectures, improving model robustness and out-of-sample performance, as well as interpreting the predictions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos