Your browser doesn't support javascript.
loading
Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review.
Gonçalves, Mariana Batista; Nakayama, Luis Filipe; Ferraz, Daniel; Faber, Hanna; Korot, Edward; Malerbi, Fernando Korn; Regatieri, Caio Vinicius; Maia, Mauricio; Celi, Leo Anthony; Keane, Pearse A; Belfort, Rubens.
Afiliação
  • Gonçalves MB; Department of Ophthalmology, Sao Paulo Federal University, São Paulo, SP, Brazil.
  • Nakayama LF; Instituto Paulista de Estudos e Pesquisas em Oftalmologia, IPEPO, Vision Institute, São Paulo, SP, Brazil.
  • Ferraz D; NIHR Biomedical Research Centre for Ophthalmology, Moorfield Eye Hospital, NHS Foundation Trust, and UCL Institute of Ophthalmology, London, UK.
  • Faber H; Department of Ophthalmology, Sao Paulo Federal University, São Paulo, SP, Brazil. luisnaka@mit.edu.
  • Korot E; Massachusetts Institute of Technology, Laboratory for Computational Physiology, Cambridge, MA, USA. luisnaka@mit.edu.
  • Malerbi FK; Department of Ophthalmology, Sao Paulo Federal University, São Paulo, SP, Brazil.
  • Regatieri CV; Instituto Paulista de Estudos e Pesquisas em Oftalmologia, IPEPO, Vision Institute, São Paulo, SP, Brazil.
  • Maia M; NIHR Biomedical Research Centre for Ophthalmology, Moorfield Eye Hospital, NHS Foundation Trust, and UCL Institute of Ophthalmology, London, UK.
  • Celi LA; Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Keane PA; Department of Ophthalmology, University of Tuebingen, Tuebingen, Germany.
  • Belfort R; Retina Specialists of Michigan, Grand Rapids, MI, USA.
Eye (Lond) ; 38(3): 426-433, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37667028
This study aimed to evaluate the image quality assessment (IQA) and quality criteria employed in publicly available datasets for diabetic retinopathy (DR). A literature search strategy was used to identify relevant datasets, and 20 datasets were included in the analysis. Out of these, 12 datasets mentioned performing IQA, but only eight specified the quality criteria used. The reported quality criteria varied widely across datasets, and accessing the information was often challenging. The findings highlight the importance of IQA for AI model development while emphasizing the need for clear and accessible reporting of IQA information. The study suggests that automated quality assessments can be a valid alternative to manual labeling and emphasizes the importance of establishing quality standards based on population characteristics, clinical use, and research purposes. In conclusion, image quality assessment is important for AI model development; however, strict data quality standards must not limit data sharing. Given the importance of IQA for developing, validating, and implementing deep learning (DL) algorithms, it's recommended that this information be reported in a clear, specific, and accessible way whenever possible. Automated quality assessments are a valid alternative to the traditional manual labeling process, and quality standards should be determined according to population characteristics, clinical use, and research purpose.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Retinopatia Diabética Tipo de estudo: Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Eye (Lond) Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Retinopatia Diabética Tipo de estudo: Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Eye (Lond) Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido