Epigenetic regulation exerted by Caliphruria subedentata and galantamine: an in vitro and in silico approach for mimic Alzheimer's disease.
J Biomol Struct Dyn
; : 1-16, 2023 Oct 10.
Article
em En
| MEDLINE
| ID: mdl-37814967
At the interface between genes and environment, epigenetic mechanisms, including DNA methylation and histone modification, regulate neurogenic processes such as differentiation, proliferation, and maturation of neural stem cells. However, these mechanisms are altered in Alzheimer's disease (AD), a neurodegenerative condition that mainly affects older adults. Since epigenetic mechanisms are known to be reversible, a number of molecules from natural sources are being studied as epigenetic regulators in AD. Recently, in vitro and in silico studies have shown that C. subedentata and its alkaloids modulated neurotoxicity. However, studies exploring the epigenetic activity of these alkaloids are limited. We conducted a set of bioassays to evaluate neuronal differentiation and the sensitivity of undifferentiated SH-SY5 cells against a neurotoxic stimulus. In addition, we analyzed the methylation profiles in genes such as APP, PSI, and BACE1 due to their role in amyloid processing. Docking and molecular dynamic analysis were used to explore the effect exerted by C. subedentata alkaloids on the regulation of histone deacetylases (HDAC2, HDAC3 and HDAC7). The results demonstrated that C. subedentata and galantamine induce neuronal differentiation and protect the undifferentiated SH-SY5Y cells against Aß(1-42)-induced neurotoxicity. The methylation profiles of the studied genes show no statistically significant differences between C. subedentata, galantamine. However, these findings should be interpreted with caution, since small changes in methylation promoters in the brain could not be easily detected. Results from in silico approaches describe for the first time the potential promissing epigenetic effects of galantamine by regulating HDAC3 and HDAC7 modification.Communicated by Ramaswamy H. Sarma.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Biomol Struct Dyn
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Colômbia
País de publicação:
Reino Unido